
A Neurocomputational Model of the N400 and the P600 in
Language Processing

Supporting Information

S1 Simulation materials

Table A1 lists the materials used in the simulations.

S2 Derivation of word meaning representations

As word meaning representations, our model employs 100-dimensional binary rep-

resentations, which were derived from a large corpus of Dutch newspaper texts (the

TwNC corpus; Ordelman et al., 2007) using the CorrelatedOccurrence Analogue to Lex-

ical Semantics (COALS; Rohde et al., 2009).

We first derived a co-occurrence matrix using a 4-word ramped window, meaning

that a word a co-occurs with b if a occurs within 4 words to the left or right of b, and that

this co-occurrence is weighted by the proximity of a to b on a scale of 4 (direct neighbor)

to 1 (separated by three words). This co-occurrence matrix, which we will refer to asX ,

is constructed for the 15.000 most frequent words. We then pruned all but the 14.000

columns of this matrix, so that the rows of thematrix then represented 14K-dimensional

word feature vectors. Next, the weighted frequency of each co-occurrencewa,b of words

a and bwas normalized by converting it to a pairwise correlation:

w′a,b =
T · wa,b −

∑
j wa,j ·

∑
iwi,b

(
∑

j wa,j · (T −
∑

j wa,j) ·
∑

iwi,b · (T −
∑

iwi,b))
1
2

(1)

where i is a row index, j is a column index, and:

T =
∑
i

∑
j

wi,j (2)

1

In the resulting matrix, we replaced each negative correlation with 0, and each positive

correlation with its square root:

norm(w′a,b) =


0 if w′a,b < 0√
w′a,b otherwise

(3)

To obtain the 100-dimensional feature vectors that we used in our simulations, we re-

duced the dimensionality of the normalized feature vectors by computing the Singu-

lar Value Decomposition of the co-occurrence matrixX15000×14000. Here we considered

only the first 100 singular values and vectors, such that we obtain matrix X̂ that is the

best rank-100 approximation to X in terms of sum squared error:

X̂15000×14000 = Û15000×100Ŝ100×100V̂
T
100×14000 (4)

A 100-unit feature vector Vc for a word c is then defined as:

Vc = XcV̂ Ŝ
−1 (5)

which can be converted to a binary vector by setting its negative components to 0, and

its positive components to 1.

S3 Details of the training procedure

We trained each model (i.e., one for each simulation) using a two-stage training pro-

cedure (see sections 3.2 and 3.3). In both stages, the two models were trained using

bounded gradient descent (Rohde, 2002), a modification of the standard backpropaga-

tion algorithm (Rumelhart et al., 1986). For each input-target pair c, we minimized the

sum squared error Ec between the desired activity dj and the observed activity yj for

each unit j in the integration_output layer:

2

Ec =
1

2

∑
j

(yj − dj)2 (6)

Error was reduced by adjusting each weight wij in the model on the basis of a delta that

is proportional to the gradient of that weight, and depends on its previous delta:

∆wij(t) = −ερ ∂E
∂wij

+ α∆wij(t− 1) (7)

where ε is the network’s learning rate, ρ a scaling factor that depends on the length of the

entire gradient:

ρ =


1

||∂E/∂w|| if ||∂E/∂w|| > 1

1 otherwise
(8)

and α a momentum coefficient, controlling the fraction of the previous weight delta to

be added.

The gradient ∂E
∂wij

of a weight wij , in turn, is estimated as the product of the error

signal δj of a unit j, and the activation value yi of a unit i that signals to unit j:

∂E

∂wij
= δjyi (9)

The error signal δj for an output unit j is defined as:

δj = (yj − dj)(yj(1− yj) + 0.1) (10)

where the constant 0.1 is a flat spot correction constant (Fahlman, 1988), preventing the

derivative yj(1−yj) of the sigmoid activation function to approach zero when yj is near

0 or 1. The error signal δj for a hidden unit j, in turn, is defined as:

3

δj = (yj(1− yj) + 0.1)
∑
k

δkwjk (11)

where all units k are units that receive signals from unit j.

We trained the model for 7000 epochs, in each of which we accumulated gradients

over 100 items before updating the weights. Training items were presented in a per-

muted order, such that by the end of training, the model has seen each item at least 43

times (7000/(16000/100) = 43.75). After all of the 16000 items were presented once, the

training order was permuted again. Weights were initially randomized within a range

of (−0.25,+0.25), and were updated using a learning rate ε of 0.2, which was scaled

down to 0.11 with a factor of 0.95 after each 700 epochs (that is, after each 10% inter-

val of the total epochs; 0.2 × 0.9510 ≈ 0.11). The momentum coefficient α was set to a

constant of 0.9. Finally, we used a zero error radius of 0.1, such that no error was back-

propagated if |yj − dj | < 0.1. The training procedure was identical for stage one and

two.

After training, we evaluated the comprehension performance of the model using

an output-target similarity matrix. For each item, we computed the cosine similarity

between the output vector for that item, and each of the 16000 different target vectors.

The cosine similarity between two vectors is defined as:

cos(x, y) =

∑
i xi × yi√

(
∑

i x
2
i)×

√
(
∑

i y
2
i)

(12)

The output vector for an item was considered correct if it was more similar to its cor-

responding target vector than to the target vector of any other item. For each of the

models and after each training stage, comprehension performance was perfect (100%

correct) on the training items. Finally, as the test items are a subset of the training items,

comprehension performance was also perfect (100% correct) on the test sets.

4

S4 Training on perfect word meaning representations

The Retrieval module of our model was trained using a rather non-standard training

procedure; we trained it as part of the overall network, rather than as a separate net-

work (see section 3.3.2 for details). We argued that this training procedure is necessary

to pressure the model to arrive at a context-sensitive solution in the Retrieval module.

Here, we compare the results of this training regime to those obtained with a training

procedure in which the Retrieval module is trained on correct word meaning represen-

tations (COALS vectors) at the retrieval_output layer (see Table A2). More specifically,

we compare the results of our model to four new models, which differ in various ar-

chitectural aspects. Each of these models is derived by taking the trained Integration

module from our model, and then training the Retrieval module on word meaning rep-

resentations using the same procedure and parameters as discussed above (with the

exception that training only lasted 700 epochs, as the models converged faster).

Two of these models have architectures identical to our neurocomputational model

(TrueModel), but their Retrieval modules were trained on perfect word meaning rep-

resentations: the IntegrationContext model and the PerfectIntegrationContext model.

In the IntegrationContext model, the contexts in the integration_context layer depend

on the quality of the word meaning representations produced at the retrieval_output

layer during training, whereas in the PerfectIntegrationContext model these contexts

were perfect (i.e., they were recorded from the Integrationmodule). A first thing to note

is that both models produce the same P600-effects as our neurocomputational model,

which is due the fact that the Integration module is unchanged; only its inputs differ

slightly. Neither of them, however, produces the desired pattern of N400-effects; differ-

ences between conditions are minimal, and the ordering of N400 estimates is wrong. In

a thirdmodel, theRetrievalContext model, the Retrievalmodule is trained as a separate

SRNwith only its own local context (i.e., a retrieval_context layerwhich receives a copy

5

from the retrieval layer prior to feedforward propagation, and a retrieval_context→

retrieval projection). Again, whereas this model produces the same P600-effects as our

model, it fails to produce the desiredN400-effects (minimal differences and incorrect or-

dering). Finally, the NoContext model, is a model in which the retrieval layer receives

no contextual information at all. This model also produces the P600-effects our model

produces, but not the N400-effects (again, minimal differences and incorrect ordering).

References

Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation net-

works. Technical report, Carnegie Mellon University.

Ordelman, R., Jong, F., Hessen, A., and Hondorp, H. (2007). TwNC: A multifaceted

dutch news corpus. ELRA Newsletter, 12(3-4).

Rohde, D. L. T. (2002). A connectionist model of sentence comprehension and production. PhD

thesis, Carnegie Mellon University.

Rohde, D. L. T., Gonnerman, L. M., and Plaut, D. C. (2009). An improved model of

semantic similarity based on lexical co-occurrence. Cognitive Science, pages 1–33.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088):533–536.

6

Table A1: Simulation materials. Overview of the materials used in the simulations.
The upper part of this table represents the lexical items used in simulation 1, and the
bottom half those in simulation 2.

Sim. Agent Patient neuter Action Mismatch
1 voetballer doelpunt + gescoord gediend

soccer player goal scored served
1 militair land + gediend gescoord

soldier country served scored
1 kok maaltijd - bereid gezongen

cook meal prepared sung
1 zanger lied + gezongen bereid

singer song sung prepared
1 advocaat bedrijf + aangeklaagd gelopen

lawyer company sued ran
1 atleet marathon - gelopen aangeklaagd

athlete marathon ran sued
1 politicus debat + gevoerd uitgegeven

politician debate engaged published
1 uitgever roman - uitgegeven gevoerd

publisher novel published engaged
1 arts diagnose - gesteld geschilderd

doctor diagnosis made painted
1 schilder schilderij + geschilderd gesteld

painter painting painted made
Sim. Agent Patient neuter Action Mismatch
2 rechercheur moord - opgelost verhoogd

detective murder case solved raised
2 werkgever salaris + verhoogd opgelost

employer salary raised solved
2 dief museum + beroofd getrokken

thief museum robbed pulled
2 tandarts tand - getrokken beroofd

dentist tooth pulled robbed
2 schipper schip + aangelegd geregisseerd

sailor ship berthed directed
2 regisseur film - geregiseerd aangelegd

director movie directed berthed
2 piloot vliegtuig + bestuurd afgelegd

pilot airplane steered taken
2 student tentamen + afgelegd bestuurd

student examen taken steered
2 verzekeraar verzekering - uitgekeerd gereden

insurer insurance paid rode
2 wielrenner etappe + gereden uitgekeerd

cyclist stage rode paid

7

Table A2: Comparison of various training regimes for the Retrieval module. Mean
N400 and P600 estimates (and standard errors in parentheses) for our neurocomputa-
tional model (TrueModel), compared to four different models trained on perfect word
meaning representations (COALS vectors). CP = Control (Passive); RA = Reversal (Ac-
tive); MP = Mismatch (Passive); MA = Mismatch (Active). See text for details on the
models.

Model Condition Simulation 1 Simulation 2
N400 P600 N400 P600

TrueModel CP .438 (.022) .039 (.006) .487 (.010) .040 (.003)
RA .479 (.011) .175 (.011) .515 (.017) .145 (.007)
MP .625 (.020) .228 (.011) .609 (.025) .208 (.020)
MA .564 (.011) .202 (.009) .592 (.021) .187 (.010)

IntegrationContext CP .355 (.007) .066 (.007) .355 (.006) .064 (.005)
RA .349 (.008) .200 (.010) .355 (.006) .165 (.012)
MP .366 (.010) .230 (.010) .352 (.010) .212 (.020)
MA .368 (.012) .216 (.009) .357 (.010) .203 (.012)

PerfectIntegrationContext CP .346 (.007) .066 (.007) .351 (.007) .063 (.005)
RA .340 (.009) .198 (.010) .351 (.007) .166 (.012)
MP .364 (.009) .230 (.009) .354 (.010) .214 (.021)
MA .365 (.010) .216 (.009) .362 (.010) .204 (.012)

RetrievalContext CP .330 (.006) .064 (.007) .356 (.010) .060 (.005)
RA .333 (.005) .196 (.010) .353 (.010) .159 (.011)
MP .345 (.007) .223 (.010) .356 (.009) .207 (.020)
MA .347 (.007) .208 (.009) .353 (.009) .197 (.012)

NoContext CP .297 (.004) .064 (.007) .315 (.008) .062 (.005)
RA .297 (.004) .196 (.010) .315 (.008) .164 (.012)
MP .315 (.007) .229 (.010) .307 (.007) .211 (.020)
MA .315 (.007) .213 (.009) .307 (.007) .201 (.011)

8

