
ORIGINAL RESEARCH
published: 11 February 2021

doi: 10.3389/fpsyg.2021.615538

Frontiers in Psychology | www.frontiersin.org 1 February 2021 | Volume 12 | Article 615538

Edited by:

Gabriella Vigliocco,

University College London,

United Kingdom

Reviewed by:

Peter beim Graben,

Humboldt University of Berlin,

Germany

Olaf Hauk,

University of Cambridge,

United Kingdom

Stefan Frank,

Radboud University Nijmegen,

Netherlands

*Correspondence:

Harm Brouwer

brouwer@coli.uni-saarland.de

Specialty section:

This article was submitted to

Language Sciences,

a section of the journal

Frontiers in Psychology

Received: 09 October 2020

Accepted: 11 January 2021

Published: 11 February 2021

Citation:

Brouwer H, Delogu F, Venhuizen NJ

and Crocker MW (2021)

Neurobehavioral Correlates of

Surprisal in Language

Comprehension: A

Neurocomputational Model.

Front. Psychol. 12:615538.

doi: 10.3389/fpsyg.2021.615538

Neurobehavioral Correlates of
Surprisal in Language
Comprehension: A
Neurocomputational Model
Harm Brouwer*, Francesca Delogu, Noortje J. Venhuizen and Matthew W. Crocker

Department of Language Science and Technology, Saarland University, Saarbrücken, Germany

Expectation-based theories of language comprehension, in particular Surprisal Theory,

go a long way in accounting for the behavioral correlates of word-by-word processing

difficulty, such as reading times. An open question, however, is in which component(s)

of the Event-Related brain Potential (ERP) signal Surprisal is reflected, and how these

electrophysiological correlates relate to behavioral processing indices. Here, we address

this question by instantiating an explicit neurocomputational model of incremental,

word-by-word language comprehension that produces estimates of the N400 and

the P600—the two most salient ERP components for language processing—as well

as estimates of “comprehension-centric” Surprisal for each word in a sentence. We

derive model predictions for a recent experimental design that directly investigates

“world-knowledge”-induced Surprisal. By relating these predictions to both empirical

electrophysiological and behavioral results, we establish a close link between Surprisal,

as indexed by reading times, and the P600 component of the ERP signal. The resultant

model thus offers an integrated neurobehavioral account of processing difficulty in

language comprehension.

Keywords: event-related potentials (ERPs), N400, P600, language comprehension, surprisal theory

1. INTRODUCTION

In language comprehension, an interpretation is incrementally constructed on a more or less word-
by-word basis, where some words incur more processing difficulty than others. Expectation-based
theories of comprehension, in particular Surprisal Theory (Hale, 2001, 2003; Levy, 2008), have
become influential in explaining word-by-word processing difficulty. Surprisal Theory asserts
that the effort incurred by a word is proportional to its expectancy in context: difficulty(wt) ≈
− log P(wt|w1 . . .wt−1, CONTEXT), where CONTEXT denotes the extra-sentential context. Indeed,
Surprisal estimates derived from language models go a long way in accounting for behavioral
correlates of processing difficulty, in particular reading times (e.g., Boston et al., 2008; Demberg
and Keller, 2008; Smith and Levy, 2008, 2013; Frank, 2009; Roark et al., 2009; Brouwer et al., 2010).
As such, a natural, yet thus far unanswered question is: What are the electrophysiological indices of
Surprisal? More specifically, what component(s) of the Event-Related brain Potential (ERP) signal
index(es) Surprisal, and what is their relationship to behavioral indices of processing difficulty?

While previous work has sought to answer this question by correlating Surprisal estimates
derived from language models with the amplitude of relevant ERP components on a
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word-by-word basis (Frank et al., 2015), we here take a
different approach. Specifically, we build upon two recent
computational models of incremental, word-by-word language
comprehension. The first is the model of “comprehension-
centric” Surprisal by Venhuizen et al. (2019a) that goes
beyond typical language models in that Surprisal is derived
directly from the interpretations that are constructed during
comprehension—rich, probabilistic representations instantiating
situation models—thereby rendering it sensitive both to
linguistic experience (like language models), but crucially, also
to knowledge about the world, which enables the model to also
account for “world knowledge”-driven effects on processing (e.g.,
Albrecht and O’Brien, 1993; Morris, 1994; Myers and O’Brien,
1998; Cook and Myers, 2004; Knoeferle et al., 2005; van Berkum
et al., 2005, among others). We here employ these meaning
representations in a neurocomputational model by Brouwer et al.
(2017) that instantiates the Retrieval-Integration account of the
electrophysiology of language comprehension (Brouwer et al.,
2012; Brouwer and Hoeks, 2013), thereby offering a mechanistic
account of the modulation pattern of the N400 and the P600—
the two most salient ERP components for language processing—
that explains key data on semantic processing (as reviewed
in Kuperberg, 2007; Bornkessel-Schlesewsky and Schlesewsky,
2008; Brouwer et al., 2012).

The resultant model produces, on a word-by-word basis,
estimates of the N400, reflecting the contextualized retrieval of
word meaning, estimates of the P600, reflecting the integration
of retrieved word meaning into the unfolding utterance
interpretation, as well as estimates of “comprehension-centric”
Surprisal, reflecting the likelihood of a change in interpretation.
Critically, while both retrieval and integration are predicted
to be sensitive to a notion of expectation, retrieval processes
are modulated by the expectancy of word meaning, while
integration processes are modulated by the expectancy of
utterance meaning. In order to identify how “comprehension-
centric” Surprisal, taken to be indexed by reading times, relates to
electrophysiological indices, we require empirical evidence that
bears upon these different types of expectancy.

A recent study by Delogu et al. (2019), henceforth DBC,
employs a context manipulation design in which they
manipulated word meaning expectancy (retrieval/N400)
through semantic association (henceforth association), and
utterance meaning expectancy (integration/P600) through
plausibility. More specifically, they manipulated the association
and plausibility of a target word in German mini-discourses,
across three conditions:

Baseline [+plausible,+associated]
Johann betrat das Restaurant. Wenig später öffnete er die
Speisekarte und [. . . ]
“John entered the restaurant. Before long, he opened the
menu and [. . . ]”
Event-related [−plausible,+associated]
Johann verließ das Restaurant. Wenig später öffnete er die
Speisekarte und [. . . ]
“John left the restaurant. Before long, he opened the
menu and [. . . ]”

Event-unrelated [−plausible,−associated]
Johann betrat die Wohnung. Wenig später öffnete er die

Speisekarte und [. . . ]
“John entered the apartment. Before long, he opened the

menu and [. . . ]”

Figure 1 shows the plausibility judgments (left) and association
ratings (middle) found by DBC. In both the event-related
and the event-unrelated condition, the target word (e.g.,
“Speisekarte”/“menu”) rendered the entire mini-discourse
implausible relative to baseline. In addition, there was also
a difference in plausibility between the event-related and
event-unrelated condition. Further, the event-related and the
event-unrelated conditions differed in the degree of association
between the target word and its prior context; that is, in the
event-unrelated condition the target word is unassociated
with the context, while in the event-related (and baseline)
condition it is associated with the context. Figure 1 (right)
shows the Cloze probabilities of the target words in all three
conditions, as determined based on completions of two-sentence
discourses up to and including the determiner preceding
the target word. Crucially, the Cloze probabilities—which
quantify the expectancy of the critical words in context, and the
negative logarithm of which determines their Surprisal—show
a qualitatively similar pattern to the plausibility ratings with all
conditions differing from each other.

In what follows, we will first derive an explicit
neurocomputational model of comprehension that produces
explicit N400, P600, and Surprisal estimates for these
conditions. Subsequently, we will outline the predictions
of the model, the ERP results obtained by DBC, as well
as the reading time results from replication of this study
using a self-paced reading (SPR) paradigm. Our results
suggest a strong qualitative link between “comprehension-
centric” Surprisal, as indexed by reading times, and the
integration processes underlying the P600 component of
the ERP signal. While this conclusion differs from previous
findings linking Surprisal to the N400 component, we
discuss how these results can be reconciled within the
Retrieval-Integration framework, thereby offering a more
integrated neurobehavioral account of processing difficulty in
language comprehension.

2. A NEUROCOMPUTATIONAL MODEL

To model both estimates of ERP components (N400 and P600),
as well as estimates of Surprisal (reading times), we start
from the neurocomputational model of the N400 and P600 by
Brouwer et al. (2017), and augment it with the rich, probabilistic
situation model representations used by Venhuizen et al.
(2019a). Critically, by replacing the thematic role assignment
representations used in Brouwer et al. (2017) with these richer
meaning representations—which naturally capture probabilistic
knowledge about the world—the resultant model produces N400,
P600, and “comprehension-centric” Surprisal estimates on a
word-by-word basis.
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FIGURE 1 | Offline ratings from Delogu et al. (2019) for plausibility (left) and association (middle), and estimated Cloze probability of the target (right) in all three

conditions.

2.1. Architecture
The neurocomputational model of language electrophysiology by
Brouwer et al. (2017) instantiates the Retrieval-Integration (RI)
account of the N400 and the P600 (Brouwer et al., 2012; Brouwer
and Hoeks, 2013; Delogu et al., 2019). The RI account postulates
that incremental, word-by-word comprehension proceeds in
cycles consisting of the Retrieval of word meaning, the ease of
which is reflected in N400 amplitude (retrieval of word meaning
is facilitated if it is expected given the preceding context), and the
subsequent Integration of this word meaning into the unfolding
utterance representation, the effort incurred by which is indexed
by P600 amplitude (integration difficulty increases as a function
of the degree to which integrating retrieved word meaning
renders the interpretation unexpected, unclear, or implausible).

Mechanistically, the processing of a word can be
conceptualized as a function process, which maps an acoustically
or orthographically perceived word wt (word form), and
the context as established after processing words w1 . . .wt−1

(utterance context), onto an utterance interpretation spanning
words w1 . . .wt (utterance representation):

process: (word form, utterance context)→ utterance
representation

This mapping is, however, indirect in that the process function
is itself composed of a retrieve and an integrate function, which
are hypothesized to underlie the N400 and the P600 components,
respectively. The retrieve function maps the incoming word
form wt onto a representation of its meaning (word meaning),
while taking into account the context in which it occurs
(utterance context):

retrieve: (word form, utterance context)→ word meaning
[∼N400]

The result of this retrieve function (word meaning) serves as
input for the integrate function, which maps the meaning of wt

(word meaning) and its prior context (utterance context) onto an
updated utterance interpretation (utterance representation):

integrate: (word meaning, utterance context)→ utterance
representation [∼P600]

The resultant, updated interpretation determines the context for
the retrieval and integration of a next word.

Formally, the neurocomputational model is a recurrent,
artificial neural network model that instantiates the process
function, broken down into its retrieve and integrate sub-
processes. Figure 2 provides a schematic overview of the model
architecture. The model consists of five layers of artificial
neurons, implementing the input to the model (input), a
Retrieval module (retrieval and retrieval_output), and an
Integration module (integration and integration_output). As
artificial neurons, we used leaky rectified linear units, the
activation function of which is defined as follows (for the leak
parameter we used α = 0.3):

f (x) =

{

x if x > 0

αx otherwise
(1)

Units in the retrieval_output and integration_output are
capped at 1.0—i.e., f ′(x) = min(f (x), 1.0)—as the representations
that the model is trained to recover at these layers are binary
representations (see below). To facilitate learning, however, units
are not capped at zero, allowing a small positive gradient for
inactive units.

Time in the model is discrete, and at each processing timestep
t, activation flows from the input layer, through the retrieval

layer to the retrieval_output layer, and from retrieval_output

layer through the integration layer to the integration_output

layer. To allow for context-sensitive retrieval and integration, the
retrieval and the integration layer both also receive input from
the activation pattern in the integration layer as established at
the previous timestep t − 1, effectuated through an additional
context layer (integration_context; see Elman, 1990). Prior
to feed-forward propagation of activation from the input to
the integration_output layer, this integration_context layer
receives a copy of the integration layer (at timestep t = 0,

Frontiers in Psychology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 615538

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Brouwer et al. Neurobehavioral Correlates of Surprisal

the activation value of each unit in the integration_context

layer is set to 0.5). Finally, all layers except the input and
integration_context layer also receive input from a bias unit, the
activation value of which is always 1.

As will be detailed below, the model is trained to
incrementally, on a word-by-word basis, map sequences of
(orthographic or acoustic) word forms, presented at the
input layer, onto an utterance meaning representation at the
integration_output layer, thus instantiating the process function
at each time tick. Crucially, the mapping from word forms onto
an utterance representation is not direct; it is broken down
into the retrieve and integrate sub-processes. Provided a localist
representation of an incoming word wt (input), encoding its
perceived orthographic/acoustic form, and the unfolding context
(integration_context), the retrieval layer serves to activate a
wordmeaning representation ofwt in the retrieval_output layer.
Hence, the function of the retrieval layer is to retrieve word
meaning representations, which take the form of distributed,
binary semantic feature vectors (derived from the training
sentences using the Correlated Occurrence Analogue to Lexical
Semantics, COALS, Rohde et al., 2005; see below). The effort
involved in retrieval is taken to be reflected in the N400
amplitude, which is estimated as the degree to which the
activation pattern of the retrieval layer changes as a result of
processing the incoming word:

N400(wt) = dist(retrievalt , retrievalt−1) (2)

where dist(x, y) = 1.0 − cos(x, y)1. The logic is that if the model
finds itself in a state in which the meaning of an incoming word is
expected, there will be little change in retrieval layer from t−1 to
t, and the estimated N400 amplitude will be small. If, on the other
hand, the meaning of an incoming word is unexpected, this will
induce a larger change, and a larger estimated N400 amplitude.

The integration layer, in turn, combines the retrieved word
meaning representation (retrieval_output) with the unfolding
utterance context (integration_context), into an updated
utterance representation (integration_output). The integration
layer thus serves to integrate word meaning into the unfolding
interpretation. The effort involved in updating the interpretation
with the meaning contributed by the incoming word is taken
to be reflected in the P600 amplitude, which is estimated as the
degree to which the activation pattern of the integration layer
changes from t − 1 to t:

P600(wt) = dist(integrationt , integrationt−1) (3)

where again dist(x, y) = 1.0 − cos(x, y). If the interpretation
is expected, given the linguistic experience of the model and/or
its knowledge about the world, integration of the meaning
contributed by the incoming word should be relatively effortless,
and hence induce a relatively small change in the integration

layer, thus producing a small estimated P600 amplitude.

1Linking hypotheses such as these, between model behavior and the

electrophysiological signal, are also known as “synthetic ERPs” (Barrès et al.,

2013, see also beim Graben et al., 2008; Crocker et al., 2010; Rabovsky et al., 2018;

Fitz and Chang, 2019, among others).

Conversely, if the interpretation is unexpected, the change in
the integration layer will be larger, and so will the estimated
P600 amplitude.

The utterance meaning representations that the model
produces—at its integration_output layer—are rich “situation
model”-like meaning representations that encode meaning as
points in a Distributed Situation-state Space (DSS; Frank
et al., 2003, 2009; for a recent reconceptualization of these
representations grounded in formal semantics, see Venhuizen
et al., 2019c). DSS offers distributed representations that allow
for encoding world knowledge, and that are both compositional
and probabilistic (see section 2.2.3 below for more detail).
Crucially, the probabilistic nature of the DSS representations
allows for deriving Surprisal estimates directly from the meaning
vectors (Frank and Vigliocco, 2011). In particular, Venhuizen
et al. (2019a) define an online, comprehension-centric notion
of Surprisal that is sensitive to both linguistic experience and
world knowledge, and that derives directly from a change in
interpretation from time-step t − 1 to t:

Surprisal(wt) =

− log P(integration_outputt|integration_outputt−1) (4)

That is, the more likely the interpretation at t given the
interpretation at t − 1, the lower the Surprisal induced by
word wt (see Venhuizen et al., 2019b, for a similar DSS-derived
conceptualization of Entropy).

To summarize, the model processes utterances on an
incremental word-by-word basis, and produces N400, P600,
and Surprisal estimates for every word. More specifically, for
a given incoming word form (input), and a given context
(integration_context), the retrieval layer retrieves a word
meaning representation (retrieval_output). Ease of retrieval
is reflected in the estimated N400 amplitude. Subsequently,
the integration layer serves to integrate this retrieved
word meaning representation into the unfolding utterance
meaning representation (integration_context), to produce an
updated utterance interpretation (integration_output). Ease
of integration is reflected in the estimated P600 amplitude,
and Surprisal estimates reflect the likelihood of the updated
interpretation given the previous interpretation. The model thus
predicts a strong correlation between the P600 and Surprisal.

2.2. Representations
2.2.1. Word Form Representations
The acoustic/orthographic word form for each of the unique
words in the training set is represented as a 16-dimensional
localist representation, such that each unit uniquely identifies a
single word.

2.2.2. Word Meaning Representations
In line with influential theories of word meaning (see McRae
et al., 2005, for a review), our model employs feature-based
semantic representations as word meaning representations, in
which related concepts may share semantic features. Specifically,
like in the Brouwer et al. (2017) model, the semantics associated
with individual words are distributed, binary feature-vectors
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FIGURE 2 | Schematic illustration of the neurocomputational model. Each rectangle represents a layer of artificial (leaky rectified linear) neurons, and each solid arrow

represents full connectivity between each neuron in a projecting layer and each neuron in a receiving layer. The dashed rectangle is a context layer, and the dashed

arrow represents a copy projection, such that prior to feed-forward propagation the integration_output layer receives a copy of the integration layer. All groups

except the input and integration_context layer also receive input from a bias unit (not shown). See text for details.

derived using the Correlated Occurrence Analogue to Lexical
Semantics (COALS; Rohde et al., 2005). While Brouwer et al.
(2017) derived COALS representations from a large corpus of
newspaper text, we here derive them directly from the training
data in order to exert more control over the resulting vectors.
That is, our objective here is to arrive at distributed, partially
overlapping semantic feature vectors, and not necessarily at
feature vectors that reflect human similarity judgments (see
Brouwer et al., 2017, for discussion). While these vectors could
in principle be constructed by hand, the COALS method allows
us to automatically derive them from our training sentences.
Critically, an artifact of applying the COALS method to a data
set of such small size, is that one may obtain identical vectors
for two or more words. We mitigate this by concatenating the
resulting COALS vectors with an identifier that assures that each
word meaning vector is unique.

First, we computed a co-occurrence matrix using a 1-word
window. We then converted the co-occurrence frequencies
into pairwise correlations. Following the COALS procedure,
we then discard negative correlations by setting them to zero,
and we reduce the distance between weak and strong positive
correlations by replacing them with their square root. Finally,

as the training set contains 16 lexical items, we derived 16-
dimensional binary word meaning vectors by replacing non-zero
values with 1. To assure unique vectors for all words, the 16-
dimensional vectors were concatenated with a 26-unit identifier
containing two hot bits, resulting in 42-dimensional unique word
meaning representations.

2.2.3. Utterance Meaning Representations
Following Venhuizen et al. (2019a), the semantics associated with
the training sentences presented to the model are derived from
the Distributed Situation-state Space model (DSS, Frank et al.,
2003, 2009; see also the formalization in terms of Distributional
Formal Semantics described in Venhuizen et al., 2019c). In
DSS, utterance meaning vectors are derived from a meaning
space that defines co-occurrences of individual propositional
meanings across a set of observations (formalized as formal
semantic models in Venhuizen et al., 2019c). For the current
meaning space, a set of propositions was generated using the
predicates enter(p,l), leave(p,l), and go_to(p,g), in combination
with arguments that identify a person (p), location (l), and goal
(g) (see Table 1). In addition, the meaning space contains the
unary predicates entity and event that assert the existence of
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TABLE 1 | Propositions described in the current meaning space and their

arguments.

Type Variable Instantiation

proposition – enter(p,l), leave(p,l), go_to(p,g),

entity(p), entity(l), entity(g),

entity(r), event(enter),

event(leave), event(go_to)

person p kevin

location l church, cinema, farm, school

goal (church) g bible

goal (cinema) g cash_register

goal (farm) g cows

goal (school) g classroom

goal g bus_stop, parking, toilet, tram

referent (church) r candle, hymn_book

referent (cinema) r popcorn_machine, seat

referent (farm) r farmer, pitchfork

referent (school) r teacher, rector

In the first column, location names in brackets indicate that certain goals and referents are

associated with particular locations, triggering presupposed entities (see text for details).

referential entities and events, respectively, in the observations
that constitute the meaning space: predicate names (enter,
leave, and go_to) instantiate arguments for event propositions,
and persons, locations and goals, together with a set of
location-specific referents (r) instantiate arguments for entity
propositions. This resulted in a total of 40 atomic propositions.

Based on this set of propositions P , a meaning space is
constructed using an incremental, inference-driven probabilistic
sampling algorithm (see Venhuizen et al., 2019c). The sampling
algorithm uses a set of hard and probabilistic constraints to
derive a set of models M that describe states-of-affairs in terms
of combinations of propositions in P . Together, these models
(i.e., observations) define a meaning space. The hard constraints
used to derive the current meaning space restrict observations to
describe a single enter or leave event, and at most one go_to event.
In addition, predicates always co-occur with explicit referential
introductions of each of their arguments and the denoted event
[e.g., enter(kevin,cinema) always co-occurs with entity(kevin),
entity(cinema), and event(enter)]. Moreover, in order for the
comprehensionmodel to learn to associate locations to particular
entities, certain propositions are constrained to always co-occur
with certain presuppositions: locations always co-occur with
their location-specific referents (selected based on the Cloze
ratings from the DBC study), and each goal necessarily co-occurs
with its associated location (as well as the associated presupposed
referents). Probabilistically, the meaning space is constructed in
such a way that goals occur more often with their related location
than with any other location (following the plausibility ratings
from the DBC study; see below).

Based on these constraints, we constructed a meaning space
consisting of 3, 000 observations, which was reduced to 350
dimensions using the dimension selection algorithm described
in Venhuizen et al. (2019a). The resulting meaning space defines

meaning vectors for each of the propositions in P ; the meaning
of proposition p ∈ P is defined as the vector Ev(p), such that
Evi(p) = 1 if p is true in modelMi ∈ M, and Evi(p) = 0 otherwise.
These vectors can be compositionally combined in order to
derive meaning vectors for logically complex expressions. In
particular, the meaning of the conjunction between propositions
p and q is defined as the point-wise multiplication of the meaning
vectors Ev(p) and Ev(q): Ev(p ∧ q) = Ev(p)Ev(q) (Frank et al., 2003;
Venhuizen et al., 2019a). The meaning vectors that are derived
from the meaning space are also inherently probabilistic, as
they define the fraction of models in which a proposition (or
combination thereof) is true. More generally, given a meaning
space of n observations, we can describe the probability of any
point a in the meaning space (which may describe a proposition,
a logical combination thereof, or any point in meaning space that
cannot be directly expressed in terms of a logical combination
of propositions) as follows (Frank et al., 2003; Venhuizen et al.,
2019a):

P(a) =
1

n

∑

i

ai (5)

Given the compositional nature of meaning vectors defined
above, we can directly derive the conditional probability of any
point in meaning space a given another point b in meaning space,
that is, P(a|b) = P(a∧b)/P(b), which in turn can be used to derive
the comprehension-centric notion of Surprisal (see Equation 4).

2.3. Training
2.3.1. Training Sentences
To obtain model predictions for the conditions from the DBC
study, we trained the model on a set of sentence-semantics
pairs that were constructed based on a subset of the stimuli
used for the DBC study (in German, but for clarity we here
report the English equivalents). All sentences presented to the
model are of the form “Kevin entered/left [LOC] went_to [REL-
TGT/UNREL-TGT],” which are associated with the semantics
enter(kevin, LOC) ∧ go_to(kevin, REL-TGT/UNREL-TGT) and
leave(kevin, LOC) ∧ go_to(kevin, REL-TGT/UNREL-TGT),
respectively. Table 2 shows the combinations of location (LOC)
and target (REL-TGT/UNREL-TGT) that constitute sentences from
the baseline/event-related condition (“Kevin entered/left [LOC]
went_to [REL-TGT]”) and the event-unrelated condition (“Kevin
entered [LOC] went_to [UNREL-TGT]”). In addition, to balance
plausibility across the enter/leave sentences, we also created a set
of counterbalance sentences with plausible completions for the
leave event, based on the Cloze completions from the DBC study
(“Kevin left [LOC] went_to [REL-TGT]”).

The model is taught that any combination of verb–location–
target is in principle possible (following Brouwer et al., 2017),
but that sentences from the baseline condition are more frequent
than other enter–location–target combinations (13 : 1), and that
counterbalance sentences are more frequent (4 : 1) than other
leave–location–target combinations. This results in a total of
160 training sentences, with 64 unique semantics, half of which
constitute enter sentences and the other half leave sentences.
All locations occur equally often across the entire training set
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TABLE 2 | Verb-Location-Target pairs used for constructing the training data.

VERB LOC REL-TGT UNREL-TGT

enter cinema cash_register bible

enter farm cows classroom

enter school classroom cash_register

enter church bible cows

leave [LOC] bus_stop/parking/tram/toilet –

Related targets (REL-TGT) are used for constructing the baseline and event-related (and

counterbalance) sentences, and Unrelated targets (UNREL-TGT) are used for constructing

the event-unrelated sentences (see text for details).

(40×), as well as all targets (20×). In terms of the probabilistic
structure of the DSS meaning vectors derived for these sentences,
the conjunctive semantics associated with the sentences from the
baseline condition have a higher probability (M = 0.04, N = 4)
than the semantics of both the event-related (M = 0.009, N = 4)
and the event-unrelated (M = 0.005, N = 4) conditions.

2.3.2. Training Procedure
Weused bounded gradient descent (Rohde, 2002), a modification
of the standard backpropagation algorithm (Rumelhart et al.,
1986), to train the model. Moreover, following Brouwer et al.
(2017), we trained the model in two stages. In the first stage,
we trained the integration module only; that is, the entire model
modulo the input and retrieval layers. The integration module
is trained to map sequences of word meaning representations
onto utterance meaning representations. The model was trained
for 2, 000 epochs, using a momentum coefficient of 0.9 and a
learning rate of 0.1, which was scaled down by 10% after every
500 epochs. In the second stage, the weights of the integration
module are frozen, and the input and retrieval layer are added
back into the model. The entire model is then trained to map
sequences of word form representations onto utterance meaning
representations. In this second stage, the model was again
trained for 2, 000 epochs, with a momentum coefficient of 0.5
and a learning rate of 0.025 (which was again scaled down by
10% after every 500 epochs). To assure generalizability of our
results, we trained 10 instances of the model, each with different
initial weight matrices. After training, we evaluated the models
in terms of mean squared error, output-target similarity, and
overall comprehension performance. Overall, performance of the
models was very good (mean squared error: M = 0.11; SD =
0.03, output-target similarity: M = 0.96; SD = 0.01; Recall@1 =
100%, comprehension score: M = 0.65; SD = 0.03).

3. NEUROBEHAVIORAL CORRELATES OF
SURPRISAL

3.1. Modeling Predictions
To obtain model predictions, we computed N400, P600, and
Surprisal estimates for the three conditions of the DBC
experiment. Figure 3 shows the estimated N400 and P600 effects
for the event-related relative to baseline contrast, and the
event-unrelated relative to baseline contrast. While increased

N400 and P600 estimates are positive distances in the retrieval
and integration layers of the model, respectively, we plot
the estimated N400-effects downward to signify the negative
direction of the corresponding effects in the ERP signal. Note
that the inputs and outputs of the retrieval and integration
processes differ fundamentally and as consequence, the internal
representations that the model develops at the retrieval and
integration layers will also differ. Therefore, the absolute
magnitudes of the N400 and P600 estimates should not be
directly compared, and also do not directly map onto scalp-
recorded voltages; that is, only the relative distances between
the conditions in the retrieval and integration layers are
of interest.

The predicted N400 estimates (Figure 3, left) show that while
the model predicts a larger N400 amplitude for the event-
unrelated condition relative to baseline, it predicts little to no
difference between baseline and the event-related condition.
Indeed, the N400 estimates pattern with the association
manipulation, showing that a higher degree of association of a
target word to its context leads to more facilitated retrieval of
its meaning. The P600 estimates (Figure 3, right), in turn, reveal
that relative to baseline, both the event-related and the event-
unrelated condition produce larger estimated P600 amplitudes
in the model. Here, the results pattern with the plausibility
ratings and the Cloze probabilities. That is, the more implausible
a target word is in a given context, and the lower its Cloze
probability, the higher the P600 estimate it induces, reflecting
increased effort in integrating its meaning into the unfolding
utterance interpretation.

The Surprisal estimates (Figure 4) also follow the plausibility
ratings and Cloze probabilities: the more implausible a word is
in context, and the lower its Cloze probability, the higher its
Surprisal according to the model. This means that integrating
an implausible, unexpected word yields an interpretation—a
point in situation-state space—that is improbable given the
interpretation constructed prior to encountering it. Crucially, the
Surprisal estimates clearly align with the P600 estimates, and not
with the N400 estimates, suggesting a link between Surprisal and
the P600. Indeed, while P600 amplitude in the model reflects the
effort involved in updating the unfolding interpretation with the
meaning contributed by the incoming word, that is, the work
involved in actually traversing from one point to the next in
situation-state space, Surprisal estimates reflect the likelihood of
this traversal.

In sum, relative to baseline, the model predicts an N400-effect
for the event-unrelated, but not for the event-related condition.
The N400 estimates thus pattern with the association ratings. As
for the P600 and Surprisal estimates, the model predicts an effect
for both the event-related and the event-unrelated condition
relative to baseline. Both the P600 and Surprisal estimates thus
follow the plausibility ratings and Cloze probabilities.

3.2. Electrophysiological Results
DBC report on the electrophysiological responses associated
with the event-related and event-unrelated conditions. Figure 5
shows the ERP results in the N400 (300–500 ms, left column)
and P600 (600–1, 000 ms, right column) time windows, for the
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FIGURE 3 | Model predictions: N400-effects (left, plotted downwards; see text) and P600-effects (right), for the event-related condition relative to baseline, and for

the event-unrelated condition relative to baseline. Error bars show standard errors.

FIGURE 4 | Model predictions: Surprisal effects for the event-related condition

relative to baseline, and for the event-unrelated condition relative to baseline.

Error bars show standard errors.

event-related and event-unrelated conditions relative to baseline.
The event-related condition, which only differs from baseline in
plausibility, produced no difference in the N400 time window
(top left), but a clear positive effect in the P600 time window
(top right). The event-unrelated condition, in turn, which differs
from baseline in both association and plausibility, produced a
clear negative effect in the N400 time-window (bottom left),

which sustained into P600 time window, albeit more frontally
pronounced (bottom right). Indeed, while the overall pattern
of results in the N400 time window support the view that
association is manifest in N400 amplitude, which is in line with
the predictions from the model, the results in the P600 time
window are less clear. That is, while the results for the event-
related condition support the view that plausibility is reflected
in the P600, consistent with the model, the results for the event-
unrelated condition seem to go against this.

Crucially, DBC argue that the P600 results may be reconciled
if one factors in spatiotemporal overlap between the N400
and the P600; that is, they argue that P600 amplitude for
the event-unrelated condition in the P600 time window is
attenuated by spatiotemporal overlap with the N400. DBC
substantiate this explanation by pointing out that—as would
be predicted when spatiotemporal component overlap is at
play—the broad negativity observed in the N400 time window
becomes more frontally pronounced in the P600 time window,
where a significant positivity arises at the occipital electrodes.
This issue of spatiotemporal component overlap in interpreting
ERP data is generally acknowledged (see Hagoort, 2003;
Brouwer and Crocker, 2017, for discussions specific to language
comprehenion), but as it affects the signal prior to recording,
it presents a problem that is notoriously hard to mitigate;
that is, given that the N400 and the P600 sum into a single
scalp-recorded voltage, isolating their contribution requires a
technique that allows for decomposing this voltage into its
relevant constituent, latent voltages.

Brouwer et al. (2020) have recently shown that regression-
based ERP (rERP) waveform estimation, as proposed by Smith
and Kutas (2015a,b), allows for such a decomposition of scalp-
recorded voltages. In an rERP analysis, linear regression models
are fitted for each subject, time point, and electrode separately,
using predictors that instantiate stimulus properties for each trial.
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FIGURE 5 | Topographic maps of the ERP effects in the N400 time window (300–500 ms, left column) and the P600 time window (600–1, 000 ms, right column). The

upper panel shows the difference between the event-related condition and the baseline. The lower panel shows the difference between the event-unrelated condition

and the baseline. Reproduced with permission (CC BY-NC-ND 4.0) from Delogu et al. (2019).

Brouwer et al. (2020) derive an rERP analysis of the DBC data
using plausibility and association as predictors. That is, for each
subject, time point, and electrode, they fit the following linear
regression model to the data:

yi = β0 + β1plausibility+ β2association+ ǫi (6)

where β0 is an intercept, β1 the slope for plausibility predictor,
and β2 the slope for association predictor. For a given trial i, the
predicted value yi is the estimated voltage, the residual ǫi is the
difference between the observed voltage and this estimate, and
the predictors plausibility and association are set to their relevant
values for the stimulus presented at this trial. Given a set of trials

y1 . . . yn, the β coefficients are then fitted by minimizing total
squared residuals (

∑n
i ǫ2i ) across trials.

Using these fitted models, an rERP data set can be computed
in which each observed voltage is replaced by an estimated
voltage. Brouwer et al. (2020) show that the resultant rERP
data set adequately mimics the observed ERP data, both in
terms of residuals (by examining grand-average residuals for each
electrode and time point) and in terms of variance (by subjecting
the rERP data to the same statistical analysis as the ERP data; that
is, by effectively treating it as a replication study). Crucially, as
each estimated voltage is now a linear combination of plausibility
and association, the individual contribution of one predictor can
be isolated by neutralizing the other (e.g., by setting it to its mean
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FIGURE 6 | Effects as estimated using regression-based ERP (rERP) estimation: the isolated effects of association in the N400 time-window (300–500 ms, left), and

the isolated effects of plausibility in the P600 time-window (600–1, 000 ms, right) for the event-related condition relative to baseline, and for the event-unrelated

condition relative to baseline. Error bars show standard errors.

value across trials). This allows us to obtain an clear view on what
is going on in the N400 and P600 time-windows.

Starting with the N400 time window, we observe that the
results align with the association manipulation. That is, we
observe a difference between event-unrelated and baseline, which
differ in association, and not between event-related and baseline,
which do not differ in association. Moreover, as both the event-
related and event-unrelated condition are more implausible
than baseline, there is no possible constellation in which
plausibility drives the N400, but gets attenuated in the event-
related condition through association (as their is no difference
in association between event-related and baseline). Finally, given
that we do not observe a difference between event-related and
baseline, plausibility seems to have little to no effect on the N400
results. Figure 6 (left) shows the N400-effects in the rERP data
when the influence of association is isolated (by neutralizing
plausibility). As in the ERPs, there is no difference between the
event-related condition and baseline, while there is a large N400-
effect for the event-unrelated condition relative baseline. Indeed,
neutralizing the effect of plausibility has little effect on the results
in the N400 time-window, confirming that the N400 results are
driven by association.

As for the P600 time window, it is clear that the P600-
effect for the event-related condition relative to baseline must
be driven by plausibility, as these conditions do not differ in
association. The question here, however, is how association and
plausibility combine to explain the results for the event-unrelated
condition relative to baseline. Figure 6 (right) show the P600-
effects in the rERP data when the influence of plausibility is
isolated (by neutralizing association). This shows the expected
P600-effect for event-related relative to baseline, but critically,
also a P600-effect for event-unrelated relative to baseline. Indeed,

this suggests that the negativity that was observed for event-
unrelated relative to baseline in the ERP data, can be explained
by association and plausibility pulling in opposite directions,
and association being the stronger force. Crucially, as association
seems to drive the N400, and plausibility the P600, this thus
suggests that the increase in P600 amplitude for the event-
unrelated condition—which we revealed by isolating the effect
of plausibility—is attenuated by spatiotemporal overlap with a
sustained N400 driven by association.

In sum, when spatiotemporal component overlap between the
N400 and the P600 is taken into account, the electrophysiological
results of DBC align closely with the predictions of the model
(compare Figures 3, 6): an N400-effect for event-unrelated
relative to baseline, and a P600-effect for both the event-related
and the event-unrelated conditions relative to baseline.

3.3. Behavioral Study
Surprisal has been typically linked to reading times (Levy, 2008).
To investigate the behavioral cost associated with the implausible
(and therefore higher in Surprisal) conditions from the study
reported in DBC, and how this cost relates to the observed
ERP responses, we have replicated the DBC study as a self-
paced reading (SPR) experiment. Previous work investigating
the effects of both plausibility and lexical association on reading
times in sentence or discourse contexts has shown robust effects
of plausibility, while the effects of lexical association are weaker
and appear to be modulated by the global context (see Ledoux
et al., 2006). For example, using eye-tracking, Camblin et al.
(2007) found effects of discourse congruence on both the target
and spillover regions of their stimuli, while effects of association
were only observed in the target region for incongruent words.
Moreover, Frank (2017) has argued that any effect of semantic
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relatedness on reading timesmay be due to a confound with word
predictability. Based on these findings, we expect reading times to
be mainly affected by plausibility on both the target and spillover
regions. In particular, we expect longer reading times for critical
words that are lexically associated with the preceding context but
implausible, compared to associated and plausible targets.

3.3.1. Method

3.3.1.1. Participants
Thirty-one participants from Saarland University took part in the
experiment. All had normal or corrected-to-normal vision, and
none had participated in the DBC study. All were native German
speakers, gave a written informed consent and were paid to take
part in the experiment.

3.3.1.2. Materials
The materials were the same as those used in the DBC study.
There were 90 two-sentence discourses in German in three
conditions (baseline, event-related implausible, event-unrelated
implausible) intermixed with 90 filler passages. Experimental
items and fillers were arranged in three counterbalanced lists (see,
for details Delogu et al., 2019, p. 3–4).

3.3.1.3. Procedure
The procedure was maintained as close as possible to the
procedure in the ERP study byDBC. The context sentence in each
pair was presented as a whole. Then a fixation cross appeared in
the center of the screen. Participants had to press the space bar
on the keyboard to proceed. Next the target sentence appeared
word-by-word in the center of the screen. Participants controlled
the rate of presentation of each word by pressing the space bar.
At the end of each trial participants were asked to judge the
plausibility of the mini-discourse by pressing one of two keys on
the keyboard. The position of the plausible and implausible keys
was counterbalanced across participants.

3.3.1.4. Analysis
Statistical analyses were performed on two critical regions, the
target word (menu) and a spillover region corresponding to
the function word following the target (und)2. We present the
results for the two regions separately and also for the two regions
combined into a single one, in order to decrease noise. Prior to
statistical analysis, reading times (RTs) shorter than 80 ms and
longer than 2, 500 ms were discarded for each region (for the
combined region, we discarded RTs shorter than 160 ms and
longer than 5, 000 ms)3. Linear mixed-effects regression models
(LMMs) were fitted to log-transformed RTs, with condition
(three levels: baseline, event-related implausible, event-unrelated
implausible), as the fixed effects, and participants and items
as random effects. The condition variable was effect-coded.
Contrasts were used to compare the two implausible conditions
with the baseline (effect of plausibility) and the event-related
with the event-unrelated conditions (effect of association in the
implausible conditions). In evaluating the models, we started
with the maximal structure of random effects, which included

2The precritical region did not show any significant difference between conditions.
3The reading time data is available at: https://github.com/hbrouwer/dbc2019rerps.

random intercepts and slopes for both subjects and items.
The random structures were then simplified by progressively
excluding the effects explaining the least amount of variability
in the model (following Bates et al., 2015). For each statistical
model, we report effect coefficients (β), standard errors (SEs), and
t-values (t). If the absolute value of t exceeded 2.5, the coefficient
was judged to be significant.

3.3.2. Results

3.3.2.1. Plausibility Judgements
Participants judged the baseline condition to be more plausible
than the event-related and the event-unrelated conditions
(baseline: 91%; event-related: 24%; event-unrelated: 8%). These
results closely mirror the offline plausibility ratings and online
judgments reported in the DBC study.

3.3.2.2. Reading Times
Figure 7 shows the results4. At the target word, participants were
slower to read both in the event-related (M = 434.8 ms, SD =
182.9) and the event-unrelated (M = 450.6 ms, SD = 221.8)
conditions compared to the baseline (M = 416.8 ms, SD =
175.3). The results of the LMM analysis revealed a significant
effect of plausibility (β = 0.035, SE = 0.013, t = 2.64) and no
difference between the two implausible conditions (β = 0.018,
SE = 0.019, t = 0.985).

The same reading time pattern emerged at the spillover word.
Participants were slower to read both in the event-related (M =
377.9 ms, SD = 89.0) and the event-unrelated (M = 389.7 ms,
SD = 95.5) conditions compared to the baseline (M = 359.5
ms, SD = 84.5). While the effect of plausibility was significant
(β = 0.05, SE = 0.013, t = 3.960), the difference between
the event-related and the event-unrelated conditions was not
(β = 0.022, SE = 0.014, t = 1.61).

LMMs on the region including both the target and the
spillover word showed an effect of plausibility (β = 0.051, SE =
0.012, t = 4.299) and a marginal difference between the two
implausible conditions (β = 0.028, SE = 0.014, t = 2.004).

To summarize, in the analysis of the target and spillover
regions, both the event-related and the event-unrelated
conditions took longer to read than the baseline, suggesting
that reading times were sensitive to plausibility rather than
association. However, the event-unrelated condition was
numerically slower than the event-related condition, possibly
suggesting an additive effect of association and plausibility. To
further investigate the relative contribution of these factors in
predicting reading times, we fitted LMMs to log-transformed
RTs in the merged target and spillover region, with plausibility
and association ratings (and their interaction) as continuous
predictors, and participants and items as random factors. Both
plausibility and association were inverted and z-transformed
prior to analysis (see Brouwer et al., 2020). Model selection
procedure was the same as in the previous analysis. There was
no effect of association (β = 0.005, SE = 0.010, t = 0.49),
and no interaction of association and plausibility (β = 0.006,

4We did not exclude trials from the analyses on the basis of the results from the

plausibility judgments.
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FIGURE 7 | Self-paced reading times (RTs) effects in the target region (left) and the spillover region (right), for the event-related condition relative to baseline, and for

the event-unrelated condition relative to baseline. Error bars show standard errors.

SE = 0.011, t = 0.53). Plausibility, however, significantly
predicted reading times in this region (β = 0.025, SE = 0.009,
t = 2.717). Thus, plausibility appears to be a more robust
predictor of reading times than association in the target and
spillover region.

In sum, the behavioral results show increased reading times
for both the event-related and event-unrelated condition relative
to baseline, and no effect of association, consistent with previous
findings showing a reading time cost for implausible targets (e.g.,
Ledoux et al., 2006). These results pattern with the P600 results
from DBC (compare Figure 7 to Figure 6), as well as with the
P600 and Surprisal estimates from the model (compare Figure 7
to Figures 3, 4).

4. DISCUSSION

We have presented a neurocomputational model of incremental,
word-by-word language comprehension that produces N400,
P600, and Surprisal estimates for each word. In this model,
which integrates the neurocomputational model of the
Retrieval-Integration account (Brouwer et al., 2017) with
a “comprehension-centric” model of Surprisal (Venhuizen
et al., 2019a), N400 amplitude is hypothesized to reflect the
effort involved in the context-dependent retrieval of word
meaning, P600 amplitude is hypothesized to index the work
required to integrate this retrieved word meaning into the
unfolding utterance interpretation, and Surprisal is taken to
reflect the likelihood of the resultant interpretation, given the
interpretation prior to integrating the meaning contributed by
the incoming word. We set out to test a key prediction of the
model: The P600, and not the N400, indexes “comprehension-
centric” Surprisal. To investigate this link, we obtained model

predictions for a recent study by Delogu et al. (2019, DBC),
which directly investigated the electrophysiological correlates
of plausibility-induced Surprisal. We found that—when
spatiotemporal overlap between the empirically observed
N400 and P600 is taken into account—the predictions of the
model closely align with the empirical ERP data, showing
that while the N400 is driven by association between a target
word and its context, plausibility drives the P600. Further, to
assess the alignment of the Surprisal estimates of the model
with behavioral indices of processing difficulty, we presented
the results from a self-paced reading replication of the DBC
study. These empirical results again align closely with the
model predictions, showing increases in reading times that
are predominantly driven by plausibility. Taken together, our
results thus support the conclusion that the P600 is an index of
“comprehension-centric” Surprisal.

While we have focused on plausibility-induced semantic
Surprisal, this conclusion is consistent with the proposal that
the P600 is an overarching index of compositional semantic
processes (Brouwer et al., 2012), which is sensitive to syntax
(e.g., Osterhout and Holcomb, 1992; Hagoort et al., 1993;
Gouvea et al., 2010), semantics (e.g., Kutas and Hillyard, 1980;
Kolk et al., 2003; Hoeks et al., 2004), and pragmatics (e.g.,
Burkhardt, 2006; van Berkum et al., 2007; Dimitrova et al.,
2012). Moreover, by establishing a link between the P600
and expectancy, as quantified through Surprisal, an interesting
question arises, namely if the P600 is indeed an instance of
the P300, and in particular of the late P3b subcomponent that
has been shown to be sensitive to the detection of salient
“oddball” stimuli (for recent discussion, see Sassenhagen and
Fiebach, 2019; Leckey and Federmeier, 2020). On the one hand,
the proposed link between the P600 and expectancy may be
tentatively be taken to suggest that the integrative processes
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underlying this component are similar to the hypothesized
context-updating mechanisms underlying the P300 (Donchin
and Coles, 1988). On the other hand, the P300 is strongly
dependent on task-demands, and while the P600 is sensitive
to the task at hand, the presence of an explicit task it not
a prerequisite for its elicitation (Kolk et al., 2003). Hence,
while the “P600-as-P3 hypothesis” (Sassenhagen et al., 2014)
poses interesting question, our results do not further elucidate
this relationship.

Importantly, the conclusion that the P600 indexes
comprehension-centric Surprisal is fully consistent with
results showing a reliable correlation between Surprisal and
the N400 (e.g., Frank et al., 2015, who employ word Surprisal
estimates derived from a language model). In fact, it follows from
the architecture of the model that the unfolding interpretation
should influence the retrieval of word meaning—which
modulates the N400 estimates—through lexical and contextual
priming (see Kutas and Federmeier, 2000; Lau et al., 2008; van
Berkum, 2009; Brouwer et al., 2012; Brouwer and Hoeks, 2013,
for detailed discussions on how these factors may influence
retrieval). Indeed, the N400 is effectively a function of the
degree to which the memory system anticipates the conceptual
knowledge associated with an incoming word, and in general,
anticipation in the memory system tends to correlate with
the expectancy of a word, as quantified through its Cloze
probability (Kutas et al., 1984; Thornhill and Van Petten, 2012).
In these cases, N400 amplitude patterns with interpretation-
level Surprisal, but is not a direct reflection of it. Crucially,
studies such as those by DBC underline this indirectness, as
they show that the semantic association of a target word to its
context can overrule its unexpectedness, thereby producing
no difference between expected and unexpected targets in
the N400; also see the literature on Semantic Illusions (e.g.,
Kuperberg, 2007; Bornkessel-Schlesewsky and Schlesewsky,
2008; Brouwer et al., 2012, for reviews). It should be noted,
however, that unlike in many of the Semantic Illusion studies,
the DBC study rules out an explanation in which the absence
of an N400-effect for unexpected, but associated targets
is due to “shallow” integrative processing—as assumed in
models in which the N400 is itself a direct index of integrative
semantic processing (e.g., Rabovsky et al., 2018)—because
the robust P600-effect for this condition, as well as high
accuracy in behavioral implausibility judgments, show that
comprehenders are explicitly aware of the unexpectedness of
the target (see also Sanford et al., 2011). Further, given that the
target sentences of the DBC stimuli were globally and locally
unambiguous, this observed P600-effect cannot be explained
by models that attribute the increase in P600 amplitude to
index syntactic repair or reanalysis (e.g., Fitz and Chang,
2019).

We have qualitatively established the P600 as a direct
index of “comprehension-centric” Surprisal by showing that
its estimated amplitude increases in response to surprising,
implausible target words, relative to unsurprising, plausible ones.
An open question remains if the P600 is also a quantitative
index of Surprisal; that is, if its amplitude is sensitive to
expectancy in a graded manner. The experiment by DBC

was not designed to address this question. We do observe,
however, in both the electrophysiological and the behavioral
results that the event-related condition at least numerically incurs
less processing difficulty than the event-unrelated condition.
Indeed, this is in line with the offline plausibility ratings and
Cloze ratings, in which the event-related condition is rated as
more plausible and expected than the event-unrelated condition,
respectively. While this may suggest a graded difference in
Surprisal between these conditions, we believe these ratings
to be confounded by association; that is, in the event-related
condition, the strong semantic association of a target word to its
context, leads people to judge them as slightly more plausible,
than the unassociated, implausible target words in the event-
unrelated condition.

Interestingly, however, the model predicts the same graded
pattern, both in its P600 estimates and in its Surprisal
estimates, as observed in the empirical data. Crucially, in
constructing the meaning space—from which the utterance
meaning representations that the model recovers in processing
are derived—we did not explicitly induce any probabilistic
difference between the semantics associated with the two
implausible conditions. Yet, we do observe a difference in
that the semantics associated with the event-related sentences
are slightly more probable than the semantics associated with
the event-unrelated sentences. This difference can be explained
by the structure of the meaning space, which is defined in
terms of probabilistic co-occurrences. Indeed, given that the
baseline and event-related condition share many of the same
presuppositions, as instantiated by entity predicate (see above),
their semantics occupy parts of the same region of the overall
meaning space. The event-unrelated semantics, by contrast,
trigger a different set of presuppositions, thereby constituting a
different part of the meaning space. As during processing the
model navigates the meaning space on a word-by-word basis,
this spatial organization directly affects its behavior, as reflected
in its P600 and Surprisal estimates; that is, the target word in
event-unrelated sentences triggers a larger transition in meaning
space than the target word in event-related sentences, thereby
explaining the difference in P600 and Surprisal estimates. Hence,
it is the presence of referential presuppositions, which serve
to associate specific targets with specific contexts, that explains
the graded pattern in the model. On a speculative note, the
model thus effectively predicts plausibility to be confounded with
association, which numerically aligns with the offline ratings and
empirical results.

In sum, while our results support a qualitative link between
Surprisal and the P600, it remains an open question if this
extends to a quantitative one, in that, like reading times, the
P600 is sensitive to expectancy in a graded manner. Given the
issue of spatiotemporal component overlap, however, addressing
this question may be challenging, as manipulating expectancy in
a graded manner may also yield graded N400 results, thereby
rendering it non-transparent what is going on in the P600 (e.g.,
see Thornhill and Van Petten, 2012). In future work, this can be
addressed by using rERP analyses, which allow for disentangling
the N400 and the P600 in space and time, on results from
co-registered reading time and ERP studies.
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5. CONCLUSION

We have presented a neurocomputational model of incremental,
word-by-word language comprehension that produces N400,
P600, and “comprehension-centric” Surprisal estimates at
each word in a sentence. In the model, estimated N400
amplitude reflects the effort involved in the contextualized
retrieval of the meaning of an incoming word, while estimated
P600 amplitude indexes the effort involved in integrating
this retrieved word meaning into the unfolding utterance
interpretation. Surprisal estimates, in turn, reflect the likelihood
of an updated interpretation, given the interpretation prior
to updating it. By testing it on an experimental design
that directly tests “world-knowledge”-induced Surprisal, we
have shown that the predictions of the model align with
empirical electrophysiological results—when spatiotemporal
component overlap between the N400 and P600 is taken
into account—as well as with behavioral reading times.
We find a close relationship between Surprisal, which we
take to be reflected by reading times, and P600 amplitude,
thereby supporting the interpretation of the P600 as the
ERP component that indexes “comprehension-centric”
Surprisal. Future work must determine if this link is only
qualitative, or if it also holds quantitatively, in that the P600,
like reading times, is sensitive to graded manipulations
of expectancy. Overall, we believe that this theory-driven
linkage of electrophysiological and behavioral correlates of
processing difficulty, through explicit neurocomputational
modeling, provides an important step toward an integrated
neurobehavioral theory of language comprehension.
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